Index Theory and Quaternionic Kk Ahler Manifolds

نویسنده

  • S M Salamon
چکیده

Index theorems are discussed and applied to coupled Dirac operators in a quaternionic setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Quaternion-hermitian Manifolds

Nearly-quaternionic KK ahler manifolds of dimension at least 8 are shown to be quaternionic KK ahler. Restrictions on the covariant derivative of the fundamental four-form of a semi-quaternionic KK ahler are also found.

متن کامل

Some Remarks on Quaternion {

Nearly-quaternionic KK ahler manifolds of dimension at least 8 are shown to be quaternionic KK ahler. Restrictions on the covariant derivative of the fundamental four-form of a semi-quaternionic KK ahler are also found.

متن کامل

Quaternionic K Ahler Metrics and Nilpotent Orbits

Given a geometric structure on a manifold it is natural to ask what are the symmetries of that structure and what are the examples of such structures with a big group of symmetries. In this talk I wish to start by discussing such questions for quaternionic KK ahler manifolds. Let M be a quaternionic KK ahler manifold, that is a manifold whose holonomy is contained in Sp(n) Sp(1), the subgroup o...

متن کامل

A Note on Rigidity of 3-Sasakian Manifolds

Making use of the relations among 3-Sasakian manifolds, hypercomplex mani-folds and quaternionic KK ahler orbifolds, we prove that complete 3-Sasakian manifolds are rigid.

متن کامل

Deformations of Hypercomplex Structures

Twistor theory shows that deformations of a hypercomplex manifold correspond to deformations of a canonically constructed holomorphic map from the twistor space of the hypercomplex manifold onto the complex projective line. Applying Horikawa's theory of deformations of maps, we calculate deformations of compact quotients and twists of the associated bundles of quaternionic manifolds. In particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992